
Leap Device Hit Analysis
Cyril Stoller

February 11, 2013

Contents
1. Motivation 2

2. Sorts of hits 3
2.1. The finger click . 3
2.2. The finger hit . 3
2.3. The hand hit . 3

3. Recording 4

4. Motion analysis 4
4.1. Finger click . 5
4.2. Finger hit . 5
4.3. Hand hit . 6
4.4. Hit timing analysis . 6

4.4.1. Position data timing . 6
4.4.2. Velocity data timing . 6
4.4.3. Acceleration data timing . 6

4.5. Conclusion . 6

5. Detection algorithm 8

6. Air drum implementation and improvement 9
6.1. Hit strength . 9
6.2. Drum separation in the XZ-plane . 9

A. Links 12

B. Conditions 12

1

C. Measurement data 12
C.1. Comparison of position data . 12
C.2. Comparison of velocity data . 12
C.3. Comparison of acceleration data . 12

This paper contains research on how the 3D tracking device Leap from
Leap Motion observes a hit in the air performed with a finger or hand. The
goal is to find a detection algorithm which feels natural and comfortable to

the user.

1. Motivation
In an earlier programming project with the Leap, I tried to implement a click detection
algorithm for a mouse driver. I simply set up a threshold for negative Y axis velocity
values (see figure 1). Since this did not feel comfortable enough and I had in mind
to build an air drum with the Leap someday, I decided to research upon how exactly
devices like the Leap observe such a hit and what detection algorithm would be best.

Figure 1: Axes of the Leap 3D motion tracking device1

1Source: Leap Motion Developer Website

2

2. Sorts of hits
First, there is a need to define what finger respectively hand movement can be a hit.
There are three types of hits I will cover here.

2.1. The finger click
Think of this movement as of a mouse click. The hand itself stays still and one of the
fingers bends downwards. This can be seen in figure 2.

Figure 2: Finger movement in a finger click

2.2. The finger hit
Then there is a hit which is done very intuitively if one has to hit something quite hard,
but still with just one finger. The hand forms a fist and usually the index finger is
sticking out. The hit movement is then performed with the wrist. This can be seen in
figure 3. This movement achieves relatively high fingertip speed values and is therefore
comparable to a hit with tools like chopsticks, pencils or even drumsticks.

Figure 3: Finger movement in a finger hit

2.3. The hand hit
This hit is normally being used when playing a drum without drumsticks (also called
tabor) e.g. a conga or a cajón. The hand is hold flat, the individual fingers are relatively

3

near to each other, though the gap is wide enough for the Leap to still detect the
individual fingers. Note that all fingers arrive at the lowest point of the movement at
about the same time.

Figure 4: Hand movement in a hand hit

3. Recording
To analyze the different movements, I wrote a little python tool. The source code is
available on GitHub (in the appendix). With it, could select a finger ID and record the
fingertips position and velocity frame per frame as reported from the Leap API. I also
added the possibility to mark the current frame by pressing a key while recording.
While performing the movement with the hand/finger, I then pressed that key when-

ever I felt like the hit should occur as an effect of my movement. So I was able to record
the fingertip movement and have a rough information about where the hit should occur
in theory.
Finally the tool generates an export file which can be imported by, for instance, Excel.
After importing the frame data of one fingertip into Excel, I then calculated the

acceleration out of the given velocity and the averaged FPS rate using equation 1 (a
corresponds to Y axis acceleration and v to Y axis velocity).

a = dv

dt
= ∆v

∆t
= vnew − vold

FPS−1 = (vnew − vold) · FPS (1)

Note that I only recorded the Y component of the fingertip position in all measure-
ments (see figure 1) except in section 6.2.

4. Motion analysis
Since the goal is to cover all of these hits with one algorithm, there has to be checked
if there are any differences between the actual fingertip movements. The following data
sets are also in the appendix, with every type of data (position, velocity and acceleration)
on a separate chart.

4

4.1. Finger click
figure 5 shows how a finger click is observed from the Leap. Position and velocity are on
the left vertical axis in mm respectively mm/s, the acceleration is on the right vertical
axis in mm/s2.

Figure 5: Analysis of a finger click

4.2. Finger hit
figure 6 shows how a finger hit is observed from the Leap. Position and velocity are on
the left vertical axis in mm respectively mm/s, the acceleration is on the right vertical
axis in mm/s2.

Figure 6: Analysis of a finger hit

5

4.3. Hand hit
figure 7 shows how a hand hit is observed from the Leap. Position and velocity are on
the left vertical axis in mm respectively mm/s, the acceleration is on the right vertical
axis in mm/s2.

Figure 7: Analysis of a hand hit

4.4. Hit timing analysis
I decided to analyze the second click hit for this. Let’s have a closer look at what goes
on exactly during a hit.

4.4.1. Position data timing

figure 8(a) shows that the hit does not occur on the lowermost point of the finger (which
is the same in the other hits on average). It occurs in about 90% of the total distance
the finger covers.

4.4.2. Velocity data timing

In figure 8(b), the hit occurs right after the point with the highest negative velocity.

4.4.3. Acceleration data timing

In figure 8(c), the hit occurs right after the zero crossing.

4.5. Conclusion
If we put the velocity and the acceleration in one chart, we get figure 9:
Described with these two values, velocity and acceleration, the perfect hit point would

be right after the acceleration becomes positive again.

6

(a) Position (b) Velocity (c) Acceleration

Figure 8: Zoomed in hit timing

Figure 9: Velocity and acceleration in function of time

7

5. Detection algorithm
The algorithm is implemented in the virtual member function on_frame of a Leap
listener class. It consists of two parts which are executed right after each other every
time a new frame (data set) is ready from the Leap device:

1. Scanning through all visible pointables objects and checking if any of them has
a tip velocity which exceeds a predefined threshold.
The threshold was defined around −500mm/s. Note that, since the velocity to-
wards the Leap is negative (according to figure 1), the following condition has to
be checked:

if pointable.tip_velocity.y < threshold

If this is true, this pointable object is about to perform a hit in the near future.
So its ID is added to a list for further observation.
This list was implemented with dictionarys in python. A dictionary is a set
of pairs each consisting of a description key and an actual value. With a two
dimensional dictionary, I was able to list the IDs in the first level and attach
several custom attributes to each of them on the second level.

2. Going through the list of pointable objects to observe. It must be distinguished
between IDs that already had a hit and IDs that did not.

• If an ID did not have a hit yet, check if the according pointable is even
visible. If not, delete the ID from the list.
If it is visible, the actual check for the hit point happens: If the velocity has
reached its lowermost point, thus the actual velocity value is greater than its
velocity in the last recorded frame, the hit has occurred (note the negative
value of the velocity again).
if pointable.tip_velocity.y > pointable_old.tip_velocity.y

If this is true, make whatever the hit executes and store the actual timestamp
of that frame. I also implemented sort of a block list with all notes playing
at the moment. If the note to be played is already in that list, do not play it
and delete this ID – the notes are too close to each other. I chose a time of
about 40ms as a minimum distance in time. That was the fastest repeated
hit I could achieve.
This way, a hand hit like in figure 4 can be performed without having reported
up to five different hits at once.

• If an ID already had a hit, check if the note has been playing long enough
(the above mentioned 40ms) by comparing the timestamp stored earlier with
the actual frame timestamp. If it has been playing long enough, remove the
note from the block list mentioned above.

8

6. Air drum implementation and improvement
Since I wanted to program an air drum, I had to add different improvements such as
how to gather the hit strength or how to separate different drums in the air.

6.1. Hit strength
To gather the strength of hit somewhere, I decided to take the highest negative velocity
and map it to a range of MIDI2 velocity levels 1 - 127. The highest negative velocity is
reached exactly before the hit occurs, since the hit occurs on the first point where the
negative velocity decreases.

Figure 10: Linearly increasing finger strength and the measured velocity. The Y velocity
is on the left vertical axis in mm/s and the Y position is on the right vertical
axis in mm. One can see a slightly exponential behaviour.

After playing a bit with linearly mapped velocity values (see figure 10), I noticed
that low values were more often reported and the response (figure 11(a)) was a bit
exponential. So I decided to correct that behavior with a smooth root function (figure
11(b)).
After the exponential input response curve has been processed by a root function, it

was approximately linear again (figure 11(c)).

6.2. Drum separation in the XZ-plane
To be able to spread different drums in the XZ-plane (see figure 1), I had to make sure
the finger/stick doesn’t have a big deviation in the XZ-plane while performing the hit.
I measured a finger hit (figure 12(a)) and a hit with a chopstick (figure 12(b)). Of curse
there are many other variations to perform a hit with different deviations.

2See en.wikipedia.org/wiki/Midi

9

en.wikipedia.org/wiki/Midi

(a) Given measurement of strength (b) Correction curve

(c) Final volume mapping

Figure 11: finger strength to volume curve correction

(a) X and Z deviation during a finger hit (b) X and Z deviation during a stick hit

Figure 12: X and Z deviation with marked velocity threshold exceeding and marked hit
point

In both figures, the point where the velocity threshold is exceeded, is marked. The
second time mark is where the hit actually occurs. As one can see, especially during the
time the finger/stick is in fast movement downwards, there is quite a big deviation. But
since it is somewhat symmetric, one possibility is to store the XZ position at threshold

10

exceeding and at the hit point. Then take the point in the middle of both positions as
point where on the XZ-plane the hit occured.

11

A. Links
• The python tool used to record the frame data sets:

www.github.com/stocyr/ConsoleMotionRecorder

• A sample python app where i implemented the algorithm:
www.github.com/stocyr/AirDrum

B. Conditions
I measured under the following conditions:

Leap device H/W revision: rev 3 connected on USB 2.0

Leap API and SDK version: v0.7.3

Tracking mode: Balanced (115.0 FPS on average)

Operation system: Windows 8

C. Measurement data
C.1. Comparison of position data
figure 13 shows all three hits and the recorded fingertip Y axis position in function of
time. The theoretical point of the hit is marked with a dashed vertical line. As one can
see, they all have their own distinctive course.

C.2. Comparison of velocity data
figure 14 shows all three hits and the recorded fingertip Y axis velocity in function
of time. The theoretical point of the hit is marked with a dashed vertical line. Here
the courses of each different type of hit look similar. The biggest difference is maybe
the maximum achieved velocity: then click movement is not as fast as the finger hit
movement and the hand hit movement is the fastest.

C.3. Comparison of acceleration data
figure 15 shows all three hits and the calculated fingertip Y axis acceleration in function
of time. The theoretical point of the hit is marked with a dashed vertical line. Note
that this data has been calculated from the velocity using equation 1.

12

www.github.com/stocyr/ConsoleMotionRecorder
www.github.com/stocyr/AirDrum

(a) Position in function of time for finger click

(b) Position in function of time for finger hit

(c) Position in function of time for hand hit

Figure 13: recorded position values for all hits

13

(a) Acceleration in function of time for finger click

(b) Acceleration in function of time for finger hit

(c) Acceleration in function of time for hand hit

Figure 14: recorded velocity values for all hits

14

(a) Velocity in function of time for finger click

(b) Velocity in function of time for finger hit

(c) Velocity in function of time for hand hit

Figure 15: recorded velocity values for all hits

15

	Motivation
	Sorts of hits
	The finger click
	The finger hit
	The hand hit

	Recording
	Motion analysis
	Finger click
	Finger hit
	Hand hit
	Hit timing analysis
	Position data timing
	Velocity data timing
	Acceleration data timing

	Conclusion

	Detection algorithm
	Air drum implementation and improvement
	Hit strength
	Drum separation in the XZ-plane

	Links
	Conditions
	Measurement data
	Comparison of position data
	Comparison of velocity data
	Comparison of acceleration data

